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Geometric and healing laws in simple stochastic models of fracture in a sputtering process
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We investigated two simple models of two-dimensional square lattice fracture under sputtering process
conditions extending a previously studied model by Ausloos and Kowidkis. Rev. B45, 12 830( 1992)].
The models differ by the particle displacement rules during the fracture. Healing of the medium is observed in
both models. This effect implies the formation of several thresholds during sputtering process fracture. They
are distributed as a size-dependent power law. An avalanchelike exponent is also obtained. We study this
phenomenology within scaling arguments of classical percolation theory and mean-field arguments.
[S1063-651%97)04501-1

PACS numbg(s): 05.40:+j, 61.43.Hv, 64.60.Ak

I. INTRODUCTION towards the initial boundary of the finite sizexL (square
lattice and to find the closest empty site outside that initial
Brittle fracture arises in materials incapable of much re-boundary, the site on which the particle was then glued. The
sistance to an external solicitation. On the contrary, a ductildner sites of the lattice were therefore slowly emptied and a
sample means that the particles inside the medium can rearP€rcolationlike” path, which was the signature of a crack
range themselves in a way that the inner cracks tend to piroughout the sample, was found as a function of size. The

repaired and that the inner empty sites are repelled towardd0C€SS was continued in order to find whether a “perpen-
the borders of the sample. icular crack” could also occur and would have some gen-

oo . . . eral features. The concentration of both crack thresholds, the
The distinction be_tween ductile ar_ld b”tﬂe frac‘“fe IS rel'concentration of the remaining filled sites, the distribution of
evant from a practical and theoretical point of vidw].

Th | f hing th bl £t clusters, and the fractal dimension of the cracks were ob-
ere are several ways of approaching the problems ol fraGyna . power-law features were indicative of essential pro-
ture. One of them is through algorithmic modelizat{@, as

) e cesses. The choice of processes was, however, very limited.
followed here below. Therefore, neither an elasticity nor a |, the present work, we consider a softer set of rules about

continuum solid statelike approach are to be found here. Inge site emptying process, allowing for the possibility of the
stead we follow the lines drawn in R€8] in which a sto-  pjt particles still to remain in the target after a hit. Two
chastic process, i.e., the most extreme situation, is considergfiobabilistic cases will be of interest. It will be found that the

in order to find whether general behaviors can be quantifiegew rules give a new feature in this kind of research, i.e., a
and if so through which ingredients of the fracture phenom-ealing process.

ena. This extremal dynamics kind of studies is rather com-
mon nowaday$4] in order to find basic laws. One underly- Il. THE MODEL FRACTURE RULES
ing concept is that of self-organizatids], well known in IN'-A SPUTTERING PROCESS
algorithmic madels. This is known to be useful in related Following the model of Ref[3], we consider a two-
prqblems like sand pile, vortex pinning, and b|olog|pal €V0-dimensional array oN=L XL particles on the sites of a
lution, army combats, earthquakes, chemical reactions, ecQyare Jattice. An external beam is supposed to hit the lattice
nomic features, et¢4—10] and should be of interest in frac-  gjtes at random. Once a target particle is hit, it is removed as
ture problems. In such systems one avoids detailediescriped in the following paragraphs. A ballisticlike dis-
microscopic approximations but rather concentrates on thgjacement of the hit particles is assumed. Each shot is taken
basic geometric points, as found in fractal geométy].  into account and counted as a unit of time, even though the
Coarse grain investigations also allow for easy access to a&it might have been without any effect on the lattice, e.g., if
ymptotic time regimes due to intrinsic computational effi- the hit is on an already emptied site.
ciency. In model I, if the randomly selected site is empty, nothing
A very simple development of the percolation problemoccurs. If the site is occupied by a particle, one of the four
was found in Ref[3]. A two-dimensional plane was sup- directions of the lattice is chosen at random and the particle
posed to be “hit” by “particles” of the same size as those is assumed to move in this direction. The particle is then
filling the sites of the investigated lattice. The ejected par-assumed to stick on the first empty site that is encountered.
ticle from the “target” or “substrate” is allowed to jump This first empty site can be inside or outside the target. If the
particle is ejected outside the target, the particle will never be
selected again by the process.

*Electronic address: rdhulst@pauli.physique.usherb.ca In model 11, a site of the target is randomly chosen at each
"Electronic address: vandewal@gw.unipc.ulg.ac.be time step. If this site is empty, nothing occurs. If this site is
*Electronic address: ausloos@gw.unipc.ulg.ac.be occupied, one of the four directiof8] of the square lattice
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FIG. 2. Log-log plot of the lattice size dependence of the num-
berF of first-cracklike thresholds for model I. The continuous line
is a guide for the eye.

FIG. 1. Lattice size dependence of the parameteys t.,,
M1, andM¢, for model I.

is randomly chosen and the particle is assumed to movehere we found numerically thg8,;=—0.51+0.05. The
along this directior(as for model ). The particle is assumed distribution of leftover particle clusters strictly in the target
to stick on the first encountered empty site with a probabilityatt., is also found to be a power law

1 or is ejected outside the target with a probabiftyModel

Il represents thus an intermediate situation between model | Ny(s)~s™ ™ €)

and the model of Ausloos and KowalsldK) [3].
sthK) 3] with an exponentr;=1.27+0.07.

After the first crack is reached, the simulation is neverthe-
IIl. NUMERICAL RESULTS less pursued until another cluster of empty sites connects the

) ) ) ] four borders of the target. This is called “the second crack
. We numerically investigated several targets of sizes rangg,reshold” occurring at timet.,. Figure 1 presents also
ing from 10x 10 to 120x 120. For both models, 100 or so t.,/L2 as a function oL. One observes a power law
simulations were made for each investigated lattice size. It
will be seen that such a range of sizes is already sufficient for teo
observing interesting features and laws. 2oL 4

with an exponentr, that was estimated numerically to be
a,=1.16+0.04, i.e., comparable ta;.

The first hit particle is obviously ejected outside the tar- Like for the first crack threshold, we determined the size
get. After a few hits, a few holes appear in the target. After adistribution of the particles clustems,(s) and the relative
numbert,; of hits, a cluster of empty sites is seen to extend‘mass” M., of the empty cluster that extends throughout
from one border to the opposite one of the target. The targehe target. Figure 2 presenkd., as a function ofL. One
is said to be fractured antl, is called the “first crack observes a power law
threshold.” Figure 1 presents this first crack threshold nor-
malized by the sizé.? of the target as a function df. One Mco~LP2, )
observes that.,/L? increases withL and behaves as a
power law

A. Model |

with an exponenf3,=—0.33+0.06, a value which is quite
different from B,. The size distributionN,(s) of particle
clusters at the second crack threshold is found to behave as a
2L (1) power law

N2(s)~s" "2, (6)
where the exponent; is estimated to bev;=1.16+0.04.

By analogy with percolation phenomef2], we charac-

terized this first crack threshold by measuring the “mass”gre_ﬁt]er' be dift . < threshold
M., of the empty cluster that crosses the lattice, renormal- € exponents seem to be different from a crack thresho

ized by the total “mass”L2, and by measuring the size to another one. Moreover, the values of these exponents are
(s) distributionN,(s) of the remaining clusters of particles dlffgrent from.ttwo-dlfmengltt)r?atl t%ercogatlonl expodneﬁtﬁt].

on the target. One should remark thdt,/L? is a constant OWEVer, It was toun at the above laws do not com-
for percolation and is equal to 0.5982]. Figure 1 presents pletely describe model I. An interesting new phenomenology
the masdM, of the “percolating” cluster of empty sites as takes place betweet, andtc,. Indeed, several secondary

a function ofL. This concentratioM .; behaves as a power cracks of the *first type,” I.e., connecting one border of the
law target to the opposite one, are observed before the second

crack threshold connecting the target four borders is reached.
Some particle displacements after the first crack threshold
M ~LP1, (2)  can fill the holes of the first spanningercolation cluster

with an exponent,=1.37+0.09, i.e., different fromr, and
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TABLE I. Averaged results for the firgfl) and second?) crack
] percolation thresholds. For models | and Il, the characteristic fea-
cl 1 tures are found to follow power laws showing a lattice size depen-
—— M, 1 dence. The corresponding exponents are given in the table. The
1 values reported for the AK model are the values of the parameters.
The number in parentheses corresponds to the uncertainty in the last

digit.
AK model Model | Model Il
ter 0.783 1.164) 0.164)
M1 0.310 —-0.51(5) —0.18(5)
Dy 1.31 1.498) 1.727)
Ny (s) 1.17 1.277) 1.699)
FIG. 3. Lattice size dependence of the parametgrs t.,, teo 0.898 1.164) 0.105)
M1, andM¢, for model Il reported on a log-log graph. M, 0.66 —0.33(6) —0.15(7)
D¢, 1.80 1.678) 1.8511)
indeed and thus repair the fracture. In this way, many firsgy ) 1.379) 1.688)
cracklike thresholds can exist before reaching the secong 0.697)

crack threshold, depending on the lattice size. Notice that the
crack of the first type can rotate with time after healing and )
can thus be found to be connecting different opposite bordely2(s). The exponents are numerically found to be

of the target. a2=O.1Ot 0.05 for teo, BQI—O.].& 0.07 for M., and
Figure 3 presents the numbirof fractures before., is ~ 72=1.68+0.08 forNy(s), i.e., again intermediate values for
reached as a function &f. A power law is observed, i.e., @z andg,.
Unlike for model I, only a few intermediate thresholds
F~L?, (7)  occurred for very long time Monte Carlo simulations. Thus,
, no characteristic behavior can be proposed<an model |
with an exponent =0.69+0.07. within a reasonable time investigation.

The mean-time intervaAt between two following crack

thresholds is IV. DISCUSSION

At= tea—lex ) For both models, it was impossible to obtain an unam-
F - biguous estimation of the fractal dimension of the percolat-
ing cluster by the usual method of the embodied boxes.

Again, a power law is found However, by a simple reasoning taking into account the be-
At~L? ©) havior of M;(i=1,2), it can be easily argued that
LD
with an exponent § numerically estimated to be M~ Iz (17
6=2.59+0.09.
Thus,

thus D¢;=2+3; in order to evaluate a “mean-fieldlike”
fractal dimension. It can be so called indeed becadsgis
measured without taking into account the geometric features

with & =0.69/2.59=0.27 which can be called the number of of the empty site distribution at the considered threshold.

avalanche time distribution exponent in the self-organized N values evaluated in this way seem reasoneldéle ).
criticality (SOQ) languag€5]. To examine the temporal dependence of the particle con-

centration, remembering that a shot is a unit of time, we
investigated the relation=n(t), wheren is the number of
occupied sites renormalized by the total site number, i.e., the

In model I, in the same way as for model |, we deter- concentration at a definite time We use a mean-fieldlike
mined numericallyt;;, M¢;, and Ny(s) at the first crack approach.

threshold. Lattice size dependences are found, characterized To estimate a mean-field probabiliBy, for a chosen par-

by power laws with respective exponenig=0.16-0.04 ticle to be ejected from the target, we assume this particle to
(for tey), B1=—0.18+0.05 (for M), and7,=1.69+0.09  be on site k,y) where bothx andy can only take integer
[for Ni(s)]. These values ofx; and 8; are intermediate values from 1 td_, i.e., the maximum target size. The prob-

between those of the AK modélhere all the above expo- ability P, for the hit particle to stay in the target is
nents are trivially zero, showing the independence of these

parameters as a function of the lattice sizg and those 1 ¢ i
estimated for model I. This is consistent with the conception Ps= Zprelgl Ps. (12)
of model Il as an intermediate case between the two others. _
Similarly, at the second crack thresholds, power laws fowherePy is the probability that there is an empty site in one
the lattice size dependence are obtainedtfgr M.,, and  of the four equivalent directions of diffusion€ 1,4 means

F~Ate/o= AtH, (10

B. Model Il
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For P,,=1, from Eq.(15), we obtaint=t(v,L) and tak-
ing for v the valuesM ;L2 andM ,L?, respectivelyt; and
te, are found. The lattice size dependences are indeed ex-
tremely good approximations with power laws like E¢b).
and (4) but the values of the exponentise., a;=1.81 for
te; anda,=2.2 fort.,) obtained in the above mean-fieldlike

. del 1 : .
\\ \ mode framework differ from the numerical dai@able | for the
\ + model Il ] same reasons as described in the preceding paragraph.
\ \ — — - AK model For model I, a finite lower size effect was observed. The
\ \ first intermediate threshold appears for lattices abowt77
ol Vs (i.e.,F=1 for L=6.8). Hence the maximum probability that
0 2500 5000 7500 10000

a hit site particle reorganizes the target and heals the fracture
can be estimated to be the critical probabilRy,(crit). This
probability should be the one permitting healing in the case
of 7X7 lattices for model I; thus from Eq(14), taking
v=M¢L%2~15, we obtainP(crit)~0.43. This predictsgin

t

FIG. 4. Time decreasing law for the particle concentration
n(t) for a 30X 30 target: analytical result for the AK model; ana-

lytical and numerical results for models | and Il. The continuous he limit of field indhat f I dels with
line is the analytical mean-field results for model I; the long-dashe e limit of a mean-field reasoninghat for all models wi

line is the one for model II; the short-dashed line is the one for the, rer<0.57, no reor.gamzatlon IS to be eXpeCtedf This is
AK model. Numerical results end as the second crack threshold i%ounq for model l.l' indeed. The leca}l value & in Eq.
reached. 12) is thus conjectured to bé(crit)=0.57. In other
words, forP ¢ (crit) target reorganization is only possible for
up, right, down, and left, respectivélgnd P, the relative  infinite Iattices._ This is similar to a us_ual phase transition
probability that the particle moves to the inside or outside ofoetween two different symmetry behaviors.
the target available site?, takes the value 0 in the AK By analogy between geometrical percolation theory and
model, the value 1 in model I, and the value 0.5 in model I1.critical thermodynamic phenomeha3], we can identify the
Notice that the probability for a chosen particle to be ejectedntratarget motion as a sort of thermal activation process

is 1— P,. If we denote byy the number of empty sites, we Characteristic of ductile fracture. The energy given by the
have external “field” is dissipated by the particles inside the tar-

get, due to “thermal motion.” At high temperatures, a situ-

ation equivalent to the case of larg§g,;, the targefalwayg

behaves like a ductile material. On the other hand, for small
(13) Prel, the target falls apart irremediably and behaves like a

brittle material. The “temperature” is thus the analog to
The average oPg over the whole target is found to be P, and the transition temperature correspond® tg(crit).

1 -2 -2
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Nt—(N-v)t V. CONCLUSION
Pn=1—Pigt P v (14)

L-1 .
LN Numerical analysis of two generalized stochastic fracture
To deduce the temporal dependence of the particle corihodels under particle hits as in a sputtering process shows
centrationn(t), we suppose that the number of empty sitethat a new type of behavior is obtained. It is connected to the
dependence is given by the discrete time master equation notion of ductibility. Introducing a kind of mean-field analy-
sis, we predicted the critical value for the relevant parameter
1— ﬂ) P dt (15) of a transition between material features when a certain pa-
N rameterP, reaches a definite value(crit) =0.68.
To decide whether a material is brittle or ductile, and
whether a “material transition” occurs requires a test of
v(t) physical (mechanical hepeproperties and then energy and
n(t)=1- ~N (16)  volume time dependence under a permanent external stress.
More elaborate elastic models should require interacting par-
The solutionn(t) for the three investigated values of ticles. Possible ways to explore the models are easily thought
Pra (i.e., for P, equal 0, 0.5, and)lis shown in Fig. 4 of. This philosophy has already been tested in other growth
where arbitrarily chosen simulation examples for models Imodels, like the magnetic Eden or the magnetic diffusion-
and Il are also shown. The theoretical laws from Ed$) limited aggregation modelgl4].
and (16) are given for both models. The theoretical law for  For the size distribution of the remaining particle clusters
the AK model is also shown for comparison. The fit is ex-insjde the target, the results for the three models are quite

cellent for model I. In the AK model, the theoretical law fits gifferent: this is a clue to the varied behavior of the particles
the data since the solution is then found exactly and analytiy,sige the target.

cally. In the case of model IlI, the theoretical law departs

from the data at finite time, and surprisingly the data are ACKNOWLEDGMENTS
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v(t+dt)=v(t)+

keeping in mind that
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