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Geometric and healing laws in simple stochastic models of fracture in a sputtering process
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We investigated two simple models of two-dimensional square lattice fracture under sputtering process
conditions extending a previously studied model by Ausloos and Kowalski@Phys. Rev. B45, 12 830~ 1992!#.
The models differ by the particle displacement rules during the fracture. Healing of the medium is observed in
both models. This effect implies the formation of several thresholds during sputtering process fracture. They
are distributed as a size-dependent power law. An avalanchelike exponent is also obtained. We study this
phenomenology within scaling arguments of classical percolation theory and mean-field arguments.
@S1063-651X~97!04501-7#

PACS number~s!: 05.40.1j, 61.43.Hv, 64.60.Ak
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I. INTRODUCTION

Brittle fracture arises in materials incapable of much
sistance to an external solicitation. On the contrary, a duc
sample means that the particles inside the medium can
range themselves in a way that the inner cracks tend to
repaired and that the inner empty sites are repelled tow
the borders of the sample.

The distinction between ductile and brittle fracture is r
evant from a practical and theoretical point of view@1#.
There are several ways of approaching the problems of f
ture. One of them is through algorithmic modelization@2#, as
followed here below. Therefore, neither an elasticity no
continuum solid statelike approach are to be found here.
stead we follow the lines drawn in Ref.@3# in which a sto-
chastic process, i.e., the most extreme situation, is consid
in order to find whether general behaviors can be quanti
and if so through which ingredients of the fracture pheno
ena. This extremal dynamics kind of studies is rather co
mon nowadays@4# in order to find basic laws. One underly
ing concept is that of self-organization@5#, well known in
algorithmic models. This is known to be useful in relat
problems like sand pile, vortex pinning, and biological ev
lution, army combats, earthquakes, chemical reactions,
nomic features, etc.@4–10# and should be of interest in frac
ture problems. In such systems one avoids deta
microscopic approximations but rather concentrates on
basic geometric points, as found in fractal geometry@11#.
Coarse grain investigations also allow for easy access to
ymptotic time regimes due to intrinsic computational ef
ciency.

A very simple development of the percolation proble
was found in Ref.@3#. A two-dimensional plane was sup
posed to be ‘‘hit’’ by ‘‘particles’’ of the same size as thos
filling the sites of the investigated lattice. The ejected p
ticle from the ‘‘target’’ or ‘‘substrate’’ is allowed to jump
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towards the initial boundary of the finite sizeL3L ~square!
lattice and to find the closest empty site outside that ini
boundary, the site on which the particle was then glued. T
inner sites of the lattice were therefore slowly emptied an
‘‘percolationlike’’ path, which was the signature of a crac
throughout the sample, was found as a function of size.
process was continued in order to find whether a ‘‘perp
dicular crack’’ could also occur and would have some ge
eral features. The concentration of both crack thresholds,
concentration of the remaining filled sites, the distribution
clusters, and the fractal dimension of the cracks were
tained. Power-law features were indicative of essential p
cesses. The choice of processes was, however, very lim

In the present work, we consider a softer set of rules ab
the site emptying process, allowing for the possibility of t
hit particles still to remain in the target after a hit. Tw
probabilistic cases will be of interest. It will be found that th
new rules give a new feature in this kind of research, i.e
healing process.

II. THE MODEL FRACTURE RULES
IN A SPUTTERING PROCESS

Following the model of Ref.@3#, we consider a two-
dimensional array ofN5L3L particles on the sites of a
square lattice. An external beam is supposed to hit the lat
sites at random. Once a target particle is hit, it is removed
described in the following paragraphs. A ballisticlike di
placement of the hit particles is assumed. Each shot is ta
into account and counted as a unit of time, even though
hit might have been without any effect on the lattice, e.g.
the hit is on an already emptied site.

In model I, if the randomly selected site is empty, nothi
occurs. If the site is occupied by a particle, one of the fo
directions of the lattice is chosen at random and the part
is assumed to move in this direction. The particle is th
assumed to stick on the first empty site that is encounte
This first empty site can be inside or outside the target. If
particle is ejected outside the target, the particle will never
selected again by the process.

In model II, a site of the target is randomly chosen at ea
time step. If this site is empty, nothing occurs. If this site
occupied, one of the four directions@3# of the square lattice
189 © 1997 The American Physical Society
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190 55R. D’HULST, N. VANDEWALLE, AND M. AUSLOOS
is randomly chosen and the particle is assumed to m
along this direction~as for model I!. The particle is assume
to stick on the first encountered empty site with a probabi
1
2 or is ejected outside the target with a probability

1
2. Model

II represents thus an intermediate situation between mod
and the model of Ausloos and Kowalski~AK ! @3#.

III. NUMERICAL RESULTS

We numerically investigated several targets of sizes ra
ing from 10310 to 1203120. For both models, 100 or s
simulations were made for each investigated lattice size
will be seen that such a range of sizes is already sufficien
observing interesting features and laws.

A. Model I

The first hit particle is obviously ejected outside the t
get. After a few hits, a few holes appear in the target. Afte
numbertc1 of hits, a cluster of empty sites is seen to exte
from one border to the opposite one of the target. The ta
is said to be fractured andtc1 is called the ‘‘first crack
threshold.’’ Figure 1 presents this first crack threshold n
malized by the sizeL2 of the target as a function ofL. One
observes thattc1 /L

2 increases withL and behaves as
power law

tcl
L2

;La1, ~1!

where the exponenta1 is estimated to bea151.1660.04.
By analogy with percolation phenomena@12#, we charac-

terized this first crack threshold by measuring the ‘‘mas
Mc1 of the empty cluster that crosses the lattice, renorm
ized by the total ‘‘mass’’L2, and by measuring the siz
(s) distributionN1(s) of the remaining clusters of particle
on the target. One should remark thatMc1 /L

2 is a constant
for percolation and is equal to 0.593@12#. Figure 1 presents
the massMc1 of the ‘‘percolating’’ cluster of empty sites a
a function ofL. This concentrationMc1 behaves as a powe
law

Mc1;Lb1, ~2!

FIG. 1. Lattice size dependence of the parameterstc1, tc2,
Mc1, andMc2 for model I.
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where we found numerically thatb1520.5160.05. The
distribution of leftover particle clusters strictly in the targ
at tc1 is also found to be a power law

N1~s!;s2t1 ~3!

with an exponentt151.2760.07.
After the first crack is reached, the simulation is neverth

less pursued until another cluster of empty sites connects
four borders of the target. This is called ‘‘the second cra
threshold’’ occurring at timetc2. Figure 1 presents also
tc2 /L

2 as a function ofL. One observes a power law

tc2
L2

;La2, ~4!

with an exponenta2 that was estimated numerically to b
a251.1660.04, i.e., comparable toa1.

Like for the first crack threshold, we determined the s
distribution of the particles clustersN2(s) and the relative
‘‘mass’’ Mc2 of the empty cluster that extends througho
the target. Figure 2 presentsMc2 as a function ofL. One
observes a power law

Mc2;Lb2, ~5!

with an exponentb2520.3360.06, a value which is quite
different from b1. The size distributionN2(s) of particle
clusters at the second crack threshold is found to behave
power law

N2~s!;s2t2, ~6!

with an exponentt251.3760.09, i.e., different fromt1, and
greater.

The exponents seem to be different from a crack thresh
to another one. Moreover, the values of these exponents
different from two-dimensional percolation exponents@12#.

However, it was found that the above laws do not co
pletely describe model I. An interesting new phenomenolo
takes place betweentc1 and tc2. Indeed, several secondar
cracks of the ‘‘first type,’’ i.e., connecting one border of th
target to the opposite one, are observed before the se
crack threshold connecting the target four borders is reac
Some particle displacements after the first crack thresh
can fill the holes of the first spanning~percolation! cluster

FIG. 2. Log-log plot of the lattice size dependence of the nu
berF of first-cracklike thresholds for model I. The continuous lin
is a guide for the eye.
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55 191GEOMETRIC AND HEALING LAWS IN SIMPLE . . .
indeed and thus repair the fracture. In this way, many fi
cracklike thresholds can exist before reaching the sec
crack threshold, depending on the lattice size. Notice that
crack of the first type can rotate with time after healing a
can thus be found to be connecting different opposite bord
of the target.

Figure 3 presents the numberF of fractures beforetc2 is
reached as a function ofL. A power law is observed, i.e.,

F;L«, ~7!

with an exponent«50.6960.07.
The mean-time intervalDt between two following crack

thresholds is

Dt5
tc22tc1

F
. ~8!

Again, a power law is found

Dt;Ld, ~9!

with an exponent d numerically estimated to be
d52.5960.09.

Thus,

F;Dt«/d5Dtm, ~10!

with m50.69/2.5950.27 which can be called the number
avalanche time distribution exponent in the self-organiz
criticality ~SOC! language@5#.

B. Model II

In model II, in the same way as for model I, we dete
mined numericallytc1, Mc1, and N1(s) at the first crack
threshold. Lattice size dependences are found, characte
by power laws with respective exponentsa150.1660.04
~for tc1), b1520.1860.05 ~for Mc1), and t151.6960.09
@for N1(s)]. These values ofa1 and b1 are intermediate
between those of the AK model~where all the above expo
nents are trivially zero, showing the independence of th
parameters as a function of the lattice sizeL) and those
estimated for model I. This is consistent with the concept
of model II as an intermediate case between the two oth

Similarly, at the second crack thresholds, power laws
the lattice size dependence are obtained fortc2, Mc2, and

FIG. 3. Lattice size dependence of the parameterstc1, tc2,
Mc1, andMc2 for model II reported on a log-log graph.
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N2(s). The exponents are numerically found to b
a250.1060.05 for tc2, b2520.1560.07 for Mc , and
t251.6860.08 forN2(s), i.e., again intermediate values fo
a2 andb2.

Unlike for model I, only a few intermediate threshold
occurred for very long time Monte Carlo simulations. Thu
no characteristic behavior can be proposed forF in model II
within a reasonable time investigation.

IV. DISCUSSION

For both models, it was impossible to obtain an una
biguous estimation of the fractal dimension of the perco
ing cluster by the usual method of the embodied box
However, by a simple reasoning taking into account the
havior ofMci( i51,2), it can be easily argued that

Mci;
LDf i

L2
, ~11!

thus Df i521b i in order to evaluate a ‘‘mean-fieldlike’
fractal dimension. It can be so called indeed becauseMci is
measured without taking into account the geometric featu
of the empty site distribution at the considered thresho
The values evaluated in this way seem reasonable~Table I!.

To examine the temporal dependence of the particle c
centration, remembering that a shot is a unit of time,
investigated the relationn5n(t), wheren is the number of
occupied sites renormalized by the total site number, i.e.,
concentration at a definite timet. We use a mean-fieldlike
approach.

To estimate a mean-field probabilityPm for a chosen par-
ticle to be ejected from the target, we assume this particl
be on site (x,y) where bothx and y can only take integer
values from 1 toL, i.e., the maximum target size. The pro
ability Ps for the hit particle to stay in the target is

Ps5
1
4Prel(

i51

4

Ps
i , ~12!

wherePs
i is the probability that there is an empty site in o

of the four equivalent directions of diffusion (i51,4 means

TABLE I. Averaged results for the first~1! and second~2! crack
percolation thresholds. For models I and II, the characteristic
tures are found to follow power laws showing a lattice size dep
dence. The corresponding exponents are given in the table.
values reported for the AK model are the values of the parame
The number in parentheses corresponds to the uncertainty in the
digit.

AK model Model I Model II

tc1 0.783 1.16~4! 0.16~4!

Mc1 0.310 20.51(5) 20.18(5)
Df1 1.31 1.49~8! 1.72~7!

N1(s) 1.17 1.27~7! 1.69~9!

tc2 0.898 1.16~4! 0.10~5!

Mc2 0.66 20.33(6) 20.15(7)
Df2 1.80 1.67~8! 1.85~11!
N2(s) 1.37~9! 1.68~8!

F 0.69~7!
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192 55R. D’HULST, N. VANDEWALLE, AND M. AUSLOOS
up, right, down, and left, respectively! andPrel the relative
probability that the particle moves to the inside or outside
the target available site.Prel takes the value 0 in the AK
model, the value 1 in model I, and the value 0.5 in model
Notice that the probability for a chosen particle to be ejec
is 12Ps . If we denote byv the number of empty sites, w
have

Ps5
Prelv
4N S (

k50

L2y21

1 (
k50

y22

1 (
k50

L2x21

1 (
k50

x22 D S 12
v
ND k.

~13!

The average ofPs over the whole target is found to be

Pm512Prel1Prel

NL2~N2v !L

vLNL21 . ~14!

To deduce the temporal dependence of the particle c
centrationn(t), we suppose that the number of empty s
dependence is given by the discrete time master equatio

v~ t1dt!5v~ t !1S 12
v~ t !

N DPmdt ~15!

keeping in mind that

n~ t !512
v~ t !

N
. ~16!

The solutionn(t) for the three investigated values o
Prel ~i.e., for Prel equal 0, 0.5, and 1! is shown in Fig. 4
where arbitrarily chosen simulation examples for model
and II are also shown. The theoretical laws from Eqs.~15!
and ~16! are given for both models. The theoretical law f
the AK model is also shown for comparison. The fit is e
cellent for model I. In the AK model, the theoretical law fi
the data since the solution is then found exactly and ana
cally. In the case of model II, the theoretical law depa
from the data at finite time, and surprisingly the data
closer to the AK law. This indicates that the neglect of c
relations in Eq.~15! is a severe approximation. In principle
one should takev as a function of the coordinates, hence t
environment of the hit site should be included in more ela
rate work.

FIG. 4. Time decreasing law for the particle concentrat
n(t) for a 30330 target: analytical result for the AK model; an
lytical and numerical results for models I and II. The continuo
line is the analytical mean-field results for model I; the long-das
line is the one for model II; the short-dashed line is the one for
AK model. Numerical results end as the second crack thresho
reached.
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For Prel51, from Eq.~15!, we obtaint5t(v,L) and tak-
ing for v the valuesMc1L

2 andMc2L
2, respectively,tc1 and

tc2 are found. The lattice size dependences are indeed
tremely good approximations with power laws like Eqs.~1!
and ~4! but the values of the exponents~i.e., a151.81 for
tc1 anda252.2 for tc2) obtained in the above mean-fieldlik
framework differ from the numerical data~Table I! for the
same reasons as described in the preceding paragraph.

For model I, a finite lower size effect was observed. T
first intermediate threshold appears for lattices about 737
~i.e.,F51 for L56.8). Hence the maximum probability tha
a hit site particle reorganizes the target and heals the frac
can be estimated to be the critical probabilityPm~crit!. This
probability should be the one permitting healing in the ca
of 737 lattices for model I; thus from Eq.~14!, taking
v5Mc1L

2'15, we obtainPm(crit)'0.43. This predicts~in
the limit of a mean-field reasoning! that for all models with
Prel,0.57, no reorganization is to be expected. This
found for model II, indeed. The critical value ofPrel in Eq.
~12! is thus conjectured to bePrel(crit)50.57. In other
words, forPrel(crit) target reorganization is only possible fo
infinite lattices. This is similar to a usual phase transiti
between two different symmetry behaviors.

By analogy between geometrical percolation theory a
critical thermodynamic phenomena@13#, we can identify the
intratarget motion as a sort of thermal activation proc
characteristic of ductile fracture. The energy given by t
external ‘‘field’’ is dissipated by the particles inside the ta
get, due to ‘‘thermal motion.’’ At high temperatures, a sit
ation equivalent to the case of largePrel , the target~always!
behaves like a ductile material. On the other hand, for sm
Prel , the target falls apart irremediably and behaves like
brittle material. The ‘‘temperature’’ is thus the analog
Prel and the transition temperature corresponds toPrel(crit).

V. CONCLUSION

Numerical analysis of two generalized stochastic fract
models under particle hits as in a sputtering process sh
that a new type of behavior is obtained. It is connected to
notion of ductibility. Introducing a kind of mean-field analy
sis, we predicted the critical value for the relevant parame
of a transition between material features when a certain
rameterPrel reaches a definite valuePrel(crit)50.68.

To decide whether a material is brittle or ductile, a
whether a ‘‘material transition’’ occurs requires a test
physical ~mechanical here! properties and then energy an
volume time dependence under a permanent external st
More elaborate elastic models should require interacting p
ticles. Possible ways to explore the models are easily thou
of. This philosophy has already been tested in other gro
models, like the magnetic Eden or the magnetic diffusio
limited aggregation models@14#.

For the size distribution of the remaining particle cluste
inside the target, the results for the three models are q
different: this is a clue to the varied behavior of the partic
inside the target.
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